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Abstract. Numerous papers have appeared in the literature over the past thirty years
discussing projection-type methods for solving the incompressible Navier-Stokes equa-
tions. A recurring difficulty encountered is the proper choice of boundary conditions
for the auxiliary variables in order to obtain at least second order accuracy in the
computed solution. A further issue is the formula for the pressure correction at each
timestep. An overview of boundary condition choices that give second-order conver-
gence for all solution variables is presented here based on recently published results by
Brown, Cortez and Minion [2].

1 Introduction

Denoting by u, the velocity, p, the pressure, and ν, the viscosity of the fluid, the
incompressible Navier-Stokes equations

ut + (u · ∇)u +∇p = ν∇2u (1)

∇ · u = 0 (2)

are considered in a region Ω ∈ 1Rn, with boundary conditions

B(u, p) = 0 on ∂Ω. (3)

Typical boundary conditions might be those for a solid wall:

u · n̂ = 0 “no flow” (4a)
u · τ̂ = 0 “no slip”. (4b)

where local normal and tangential vectors to the wall are given by n̂ and τ̂ . Sub-
scripts denote partial differentiation. Specifying the pressure, its normal deriva-
tive, or a combination of the two at outflow is also a possibility:

αp + βn̂ · ∇p = g. (5)

For a discussion of allowable boundary conditions see, e.g. [9].
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2 David L. Brown

2 Projection methods

Projection methods, or “fractional step” methods, as they are sometimes called,
advance the momentum equation (1) and enforce the continuity condition (2) in
separate steps [1,4,10,13]. These methods make use of the Hodge decomposition
theorem, which states that any vector function v(x) can be decomposed into a
divergence-free part u plus the gradient of a scalar potential φ, i.e.

v(x) = u(x) +∇φ(x) (6)

with ∇ · u = 0, where furthermore, using a suitable inner product, (u,∇φ) = 0,
i.e. the two parts are orthogonal. In order for the decomposition to be unique,
boundary conditions must be specified as well. For the purposes of this paper,
we choose to specify the normal component of the velocity, i.e.

n̂ · u = ub. (7)

Thus, the divergence-free part of an arbitrary vector v can be obtained by a
projection onto the orthogonal subspace of divergence-free vectors by removing
the gradient of an appropriately chosen scalar potential φ. The notation

u = P(v) (8)

is sometimes used to express this projection.
Using this information, one is naturally led to an approach whereby an ap-

proximation to the momentum equation

u∗t + (u · ∇)u +∇q = ν∇2u∗, (9)

is advanced for some interval of time to <= t <= t1, and the divergence-free
velocity is computed when needed using the projection

u(t) = P(u∗(t)). (10)

Here ∇q(x, t) is some approximation to the pressure gradient, which may even
be zero (see e.g. [10]). As a practical matter, the projection is effected by deriving
an elliptic equation as follows. Applying the Hodge decomposition theorem, we
can write

u∗ = u +∇φ. (11)

Taking the divergence of (11) and applying (2), results in the elliptic constraint
equation for φ

∇2φ = ∇·u∗. (12)

The pressure can be recovered at any time using the formula

∇p = ∇(q + φt)− ν∇2∇φ, (13)
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which is derived by substituting (11) into (9) and comparing with the original
momentum equation (1). Common practice for projection methods is to advance
(9) for a single timestep, compute u at the end of the timestep using the pro-
jection, and then replace u∗ with this new value of u at the beginning of the
next timestep. When u∗ is reset to u at the end of each timestep, it always
stays relatively close to u during the computation. Various projection methods
discussed in the literature differ in their approximation of the advective terms
(u · ∇)u, the approximation used for q, whether (9) is advanced explicitly or
implicitly, and how the pressure gradient update formula (13) is approximated.

An alternative class of methods does not reset u∗ at the end of each timestep,
but allows it to evolve over the period of the computation. Such methods, known
variously as “magnetization”, “impulse” or “gauge” methods have been devel-
oped by Buttke [3], Cortez [5,6], E and Liu [7,8], Recchioni and Russo [11]
and Summers and Chorin [12]. One advantage of such methods is that the ap-
proximation q = 0 can be used, and the pressure never need be determined
unless pressure-dependent boundary conditions are required. Note also that the
demonstrated success of these methods indicates that the length of time that the
approximate momentum equation (9) can be integrated need not be restricted
to a single timestep. These methods will not be discussed further in the present
paper.

3 Boundary conditions when pressure term is included in
predictor

Boundary conditions are required on φ in order to solve (12). In addition, bound-
ary conditions on u∗ are required if (9) is to be advanced implicitly and also to
compute the right-hand side of (12). Since both u∗ and φ are auxiliary variables,
the original problem formulation does not tell how to set their boundary values.
However it is clear that any boundary conditions that are specified must satisfy
(11) as a constraint, i.e.

∇φ|∂Ω = (u∗ − u)|∂Ω . (14)

Since both u∗ and u are known at the point that the elliptic equation (12) is
solved, and given our choice for the boundary condition form (7), the appropriate
boundary condition for this equation is therefore

n̂ · ∇φ|∂Ω = n̂ · (u∗ − u)|∂Ω . (15)

The boundary conditions on u∗ are more problematic since they are needed
before φ is computed. As reported in [2], the correct choice depends on the
approximation for ∇q used in (9). Bell, Colella and Glaz [1] advance (9) using
Crank-Nicolson for time integration, approximate the advective terms with a Go-
dunov procedure, and use the time-centered pressure gradient from the previous
timestep to approximate ∇q:

(u∗ − un)
∆t

+ ((u · ∇)u)n+ 1
2 +∇pn− 1

2 =
ν

2
(∇2u∗ +∇2un) (16)
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Here, superscripts involving n denote the time level. Since ∇pn− 1
2 = ∇pn+ 1

2 +
O(∆t), (16) implies that u∗ = un+1 +O(∆t2), and so it appears plausible that
a second-order method can be obtained simply by using the original specified
boundary conditions for u as boundary conditions for u∗, i.e.

u∗|∂Ω = un+1|∂Ω . (17)

Substituting this condition into (15), it is apparent that the boundary condition
for φ becomes particularly simple in this case as well:

n̂ · ∇φ|∂Ω = 0. (18)

In fact in [2], normal mode analysis is used to show that if an appropriate
approximation to the pressure gradient update formula (13) is used, namely

∇pn+ 1
2 = ∇pn− 1

2 +
1

∆t
(∇φ− ν∆t

2
∇2∇φ) (19)

both the velocity u and the pressure p converge to second order in ∆t.

4 The pressure gradient update formula

Implementing (19) is problematical because of the term involving ∇2∇φ. Near
boundaries, for example, formulation of an appropriately accurate discretization
of this term can be difficult. Removing this term altogether apparently involves
only an O(∆t) perturbation to the formula for ∇pn+ 1

2 . Again, by inspection of
(9), It might therefore be reasonable to expect that using the approximation

∇pn+ 1
2 = ∇pn− 1

2 +
1

∆t
∇φ, (20)

as is done in [1] and related papers, would lead to a second-order result for the
velocity. It remains the case, however, that this is a first order perturbation to the
formula for the pressure, so second-order convergence of the pressure would not
be expected. Since the pressure and velocity are coupled by the Navier-Stokes
equations, it would also seem doubtful that the velocity would be computed to
second-order by this method. Surprisingly, in [2], it has been both proven using
normal mode analysis and demonstrated numerically that using (20) in conjunc-
tion with (16), while it leads to only first order convergence of the pressure, does
result in second-order convergence of the velocity. The first order convergence
of the pressure results from a spurious mode in the pressure that converges like
O(ν∆t). This mode can only be annihilated by using the update formula for the
pressure given in (19).

5 Boundary conditions when pressure term is set to zero
in predictor

Provided that boundary conditions can be chosen appropriately, any convenient
approximation can be used for the ∇q term in (9) since the subsequent projection
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step will always pick out the correct potential gradient to give a divergence-free
velocity. The method proposed by Kim and Moin [10] uses q = 0, for example.
Finding appropriate boundary conditions for u∗ and φ become more difficult
in this case, since it is no longer true that u∗ is an O(∆t2) perturbation of
u. The normal mode analysis presented in [2] suggests again that as long as
the compatibility condition (14) is satisfied, second-order convergence should be
possible. Since the compatibility condition is only one constraint on the boundary
conditions, a convenient choice such as n̂ · ∇φ = 0 seems desirable, leading to
the proposed boundary conditions

n̂ · u∗|∂Ω = n̂ · un+1|∂Ω (21a)
τ̂ · u∗|∂Ω = τ · (un+1 +∇φ̃n+1)|∂Ω (21b)

n̂ · ∇φn+1|∂Ω = 0 (21c)

Here, ∇φ̃n+1 is an approximation to ∇φn+1. According to the normal mode
analysis [2], a first order approximation to ∇φn+1 is required in order to obtain
second-order convergence, and so

∇φ̃n+1 = ∇φn (22)

is used. Numerical studies using these boundary conditions, however, demon-
strate only first-order convergence for the pressure in many cases even when
using the improved formula

pn+ 1
2 = φn+1 − ν∆t

2
∇2φ (23)

for the pressure. The problem with using these boundary conditions lies in the
fact that the function u∗ is not smooth near boundaries in all cases. Since ∇2φ =
∇·u∗, (23) implies that the pressure will not be smooth either near boundaries.

Rather than choosing homogeneous Neumann boundary conditions for φ in
this case, a better idea is to choose the boundary condition for u∗ in such a
way as to guarantee smoothness of that function up to the boundary. Instead
of (21a), we extrapolate n̂ · u∗ to the boundary using at least a second-order
extrapolation formula. The boundary conditions become

En̂ · u∗|∂Ω = 0 (24a)
τ̂ · u∗|∂Ω = τ · (un+1 +∇φ̃n+1)|∂Ω (24b)

n̂ · ∇φ̃|∂Ω = n̂(u∗ − u)|∂Ω (24c)

While an inhomogenous Neumann condition is now required for the ellip-
tic problem for φ, the corresponding numerical experiments demonstrate fully
second-order convergence for both the velocity and pressure, justifying the ad-
ditional effort.

6 Summary of results

Table 1 summarizes the convergence results reported here and in [2]. The columns
labeled “boundary conditions” indicate what the inhomogeneous terms are in
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the boundary conditions for u∗ and n̂ · ∇φ. The columns labeled “difference
approx.” indicate the choice for q and the formula used for the pressure update
or evaluation. The number shown in the columns labeled “conv. rate” are the
exponent in the observed convergence rate in time for the resulting combination
of boundary conditions and difference approximation.

Table 1. The convergence rate for the pressure depends upon the choice of boundary
conditions and pressure updates in the projection scheme.

Boundary Conditions Difference Approx. Conv. Rate

n̂ · u∗|∂Ω τ̂ · u∗|∂Ω n̂ · ∇φn+1|∂Ω q p update u p

n̂ · un+1 τ̂ · un+1 0 pn− 1
2 (20) 2 1

n̂ · un+1 τ̂ · un+1 0 pn− 1
2 (19) 2 2

n̂ · un+1 τ̂ · (un+1 + ∇φn ) 0 0 (23) 2 1

Extrapolate τ̂ · (un+1 + ∇φn) n̂ · (u∗ − un+1) 0 (23) 2 2
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